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ABSTRACT: Topographic conditions play an important role on the
modification of seismic ground motion. Therefore, their effects may
become crucial in the selection or simulation of ground motion for use
in structural seismic response analysis. In this research, topography
effects of canyon sites are analyzed using a three-dimensional boundary
element procedure. The multi-domain boundary element method
proposed by Ahmad and Banerjee is used for three-dimensional cases
with good accuracy. Effects of model parameters (free-field and
canyon lengths) are well accounted for ensuring accurate results. It is
shown that the free-field (both side of the canyon cross-section) length
is less influential than the canyon length. Some general rules for the
three-dimensional boundary element modeling of wave scattering
problem are proposed. In addition, effects of different wave parameters
(frequency and direction), material properties (damping ratio and
poisson's ratio) and canyon geometry are investigated.It is
demonstrated that the effect of canyon shape and canyon depth on
the topographic amplification is frequency dependent. Deep canyon
(semi-circular canyon) induces larger amplification effect than
shallow canyon (semi-élliptical canyon) in different frequencies.
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1. Introduction

Topographic amplification plays an important role
on the modification of seismic ground motion. This
effect may become crucial in the selection or
simulation of ground motion for use in structural
seismic response analysis. The effects of surface
topography can greatly enlarge the site response
exerting an important influence on the distribution of
damage observed during earthquakes [1]. Some
seismic codes are concerned about the importance
of topographic effects [2]. In the last decades the
evaluation of topographic effects was done via
different approaches. Different analytical and
numerical techniques were adopted to deal with
topographic effects on the seismic wave scattering
problems (e.g., Trifunac [3], Pedersen et al [4],
Sanchez-Sesma and Luzon [5], Sanchez-Sesma and
Campillo [6], Paolocci [7], Zhang and Chopra [8],

Niu and Dravinski [9] Dravinski [10] Eshraghi and
Dravinski [11] Mossessian and Dravinski [12], Zhao
et a [13], Luco et a [14], Athanasopoulos et a [15],
Assimaki, et al [16], Kamalian et al [17-18], and
Geli et al [19]). On the other hand, the recorded
ground motions after recent destructive earthquakes
have made empirical estimation of topographical
effect possible (e.g., March 3, 1985 Chile Earthquake
[1], June 15", 1995 Egion Earth-quake in Greece
[15], the 1999 Athens Earthquake in Greece [16],
the 1994 Northridge Earthquake in California [20],
the Dead sea rift earthquake in Israel [21], June 11™,
1999 Earthquake in France [22] and November 23,
1980 Earthquake in Italy [23-24]).

Comparisons between theoretical and empirical
results for different site responses have been
investigated by severa studies (e.g., [7, 16 and 19]).
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There are some discrepancies on the results obtained
from both approaches. Pedersen et al [25] concluded
that there is a good agreement between empirical
data and theoretical results, concerning purely
topographical induced amplifications on ridge tops.
On the contrary, Chavez-Garcia et a [26] pointed out
a possibility of discrepancy between the horizonta to
vertical spectral ratio (HVSR) empirical response and
the theoretical transfer function, due to the fact that
the 2D homogeneous model used in the work may be
too simplistic for the mountain under investigation.
This latter discrepancy is discussed again in [27] in
terms of the inadequacy of the 2D models.

A quantitative result obtained for differences
between theoretical and observed amplifications at
topographic features is presented by Paolocci et a
[28]. The limitations of the theoretical simulations on
complex sites and lack of enough information of
underground irregularities are presented as reasons
for disparity [7, 19]. An up-to-date review paper of
the published literatures on boundary integral
equations and boundary element methods in
elastodynamicsis recently presented by Bouchon and
Sanchez-Sesma [29].

The analytical methods are restricted to media
with simple geometries as well as scalar wave
components. On the other hand numerical techniques
can be used for real-world geometries and vector
wave components but they need much computational
time and memory. For infinite problems, we need to
model alarge part of the media with huge degrees of
freedom especially using the domain methods such as
the finite element. However, the boundary element
method (BEM) is very effective when dealing with
wave propagation problems in infinite media with
geometrical irregularities. The main advantage of this
method is that discretization is only applied at the
boundaries of the physical domain, thus reducing

by \
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the number of unknown variables significantly in
comparison to other methods such as finite element
and finite difference techniques. On the other hand,
since the fundamental solutions automatically satisfy
the far-field conditions, the BEM is especially well-
suited to problems involving infinite domains such as
a canyon located on a half-space [32]. Issues such
as the reduction of dimensionality, the fulfillment of
radiation conditions at infinity, and higher accuracy
in the results, make the boundary element method
quite attractive in engineering seismology and
especially in evaluation of topographic effects.

While numerous studies have been done on the
two-dimensional elastic response of an isotropic
medium, very little has been published on three-
dimensional analyses. In this research the multi-
domain boundary element method proposed in [30]
is used to study the amplification of elastic waves by
a three dimensional canyon. Incident plane harmonic
SH-waves are considered. The accuracy of the
method is verified against results of other studies,
and effects of different parameters are investigated.

2. Topography

An arbitrarily shaped canyon of finite length located
in homogenous, elastic and isotropic half space
is considered as illustrated in Figure (1). Seismic
body waves arrive from an arbitrary direction with
angles of q, and g, with respect to the horizontal x-
and the vertical z-axes, respectively. The half-space
is characterized by the P and Swave velocities €, and
G, respectively. To compute the total displacement
at the canyon site due to incident body waves, the
following four steps should be taken:

1. Determine the ground motion for free-field
conditions (Ug) for the half-space without the
canyon, see Figure (2a). Closed-form solutions
are available for various incident body waves.

Lh Lh

\_/ l
Body WE'.’:A
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T

Figure 1. Topographic system considered is an arbitrarily shaped canyon of finite length with the incident waves arriving from

an arbitrary direction.
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2. Determine the canyon base tractions correspond-
ing to the displacements in the previous step, see
Figure (2b).

3. Apply the opposite of the tractions computed in
step 2 at the base of the canyon as a traction
boundary condition and determine the displace-
ments, see Figure (2c).

4. Determine the total displacements by superposi-
tion of the two displacements obtained in steps 1
and 3, i.e,, Uy =Ugx +Ug

In the third step, u_ is determined using the 3D
boundary element technique as discussed in the next
sections.

3. Background Theory and Boundary Element
Method

The governing wave equation in frequency domain
for elastic, isotropic and homogeneous body is:

GNERD) - SN N T+wii=-b (1)

in which g denotes the displacement amplitude
vector, b denotes the body force vector, w denotes

[{=4]

Figure 2. Superposition principle for wave scattering
problem in a canyon: a) free-field without canyon;
b) tractions induced by free-field displacements;
and c) displacements due to reversed free-field
tractions on the canyon surface.

the circular frequency and ¢, and c, are the propaga-
tion velocities of compression (P) and shear (S)
waves, respectively. The velocities are related to the
properties of the medium through:

=0 +20r)*c,=(mr)’® )

where | and N are the Lame constants and r isthe
mass density [31-32].

The corresponding governing boundary equation
for an elastic, isotropic, homogenous body can be
obtained using the well-known dynamic reciprocal
theorem as.

cu' +@ pudG = g u'pdG (3)

where ¢ isthejump tensor and dependent on the local
geometry, p* and u* are the fundamental solution
for traction and displacement respectively, at a point
x when a unit Dirac Delta load is applied at point i.
In the BEM, the variables u and p are discretized into
the values at the so-called collocation nodes.

The displacement and traction fields are interpo-
lated over each element using a set of shape functions.
The same shape functions are also used to approxi-
mate the geometry, i.e. the elements are isoparametric.
Dicretization of Eq. (3) yields:

.o ne
c'u'+a1(é pF dGY u‘:
j=1! %

|| - Qoz

1 Uni
{@ UF dG%p (43_)

The expressions inside the braces can be replaced
with the more familiar abbreviations:

G”=QJUF dG (4b)
Hll:étijdeG (40)
IHIrn f| - when itm

THM=H™+d  when i=m (4d)

According to Eq. (4) the surface integral is
exchanged with a sum of integrals over ne elements.
It should be noted that the BEM allows the use of
constant elements, where the displacements and
tractions are assumed to be constant over the entire
element leading to discontinuities at the element
edges. However, this kind of element is inadequate
for most wave propagation problems as the
convergence is very slow compared to that of
higher-order elements. Quadratic elementsare used in
this research. After assembling all equations, the
following set of equationsis obtained:
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HU =GP (5)

inwhich H is a 3nx 3n matrix, U isa 3nx1 displace-
ment vector, G is a 3nx 3nne matrix, and P is a
3nnex 1 traction vector, and nne is the product of
the number of elements and number of nodes. The
problem has 3n unknowns that should be obtained
by solving Eq. (5).

4, Fundamental Solutions

The fundamental solution in the frequency domain
for the displacement is the solution to Eqg. (1) for a
harmonic point force with unit amplitude applied at
the point y in the | direction, i.e.,

rb=d(r)é (6)

where r is the distance between the observation
point x and the source point y, d the unit vector on
I-direction and d is the Delta Dirac function. In
order to find the fundamental displacement solution,
the principle of Helmholtz decomposition is used.
The fundamental solution expressions are adopted
from [31-32] and the free-field surface displacement
in the frequency domainis:

U= aprcz [y dy - cr,rk] (73)
exp(-kor) 1, exp(-kyr)
Y= ‘ +(k22+k2r) r ‘
G 1, 1yeplk) (7b)
o2k kr r
=2 exp(- kyr)
(k2 +k2 )= =2
%3 , 3 pexpkn) (70)
012(k12f2+ kr +D r

in which u,, denotes the displacement in a k
direction when the load is applied in the | direction,

iw

a =4, d; is Delta Dirac function and, kl_; and

kz—c— denote the wave numbers for compression
2
and shear waves, respectively. The subscript | is
used to indicate the coordinate direction of the point
load.

The fundamental solution for the free-field surface

tractions in the frequency domain is:
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pre= -2 18- Loy (dy Tenn)

ap dr r
2 dc qir
-=cC -2 2— +
. (ner r,lrk ) dr r rk‘"n
(89)
2
Ci .5 dy _dc_
(c§ )(dr dr 2r c)nnd
dy:(_g_k_ 3 .3 exp(-kr)
dr ro7 kr? K2l r
G.1. 3 . 3 exp(-kr) (8b)
_2(_+_2+ﬂ -
G rokr r r
d_C: _ﬂ_ k_ 9 - )exp( kzr)
dr ro7 kor? Kl r
2 _ 8c
9, 9 ,exp(-kn) (8c)

cr kr?  krd r

5. Treatment of Singularities

The solution for the free-field displacement and
subsequently the matrix G contain singularities
because of the 1/r term. A weak singularity is
encountered when the collocation node coincides
with the integration node. To perform the numerical
integration using standard Gauss-L egendre quadrature
over an element where the collocation node is one of
the element nodes, a method proposed by Lachat is
used [31]. In this method, the element is divided into
a number of triangles, each having one of the
corners at the collocation node and the integration
is performed over each of the triangles using a
standard Gauss-L egendre quadrature rule over an
equivalent collapsed quadratic element, see Figure (3).

Figure 3. Division of 9-node quadrilateral element to proper
triangular sub-elements with singularity at node 8.
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In the collapsed quadrilateral elements, two of
the corner nodes coincide, so that one of the element
sides has a zero length. When performing the
numerical integration over an element with such
geometry, the Jacobian tends to zero as r ® 0 and
cancels out the 1/r singularity. Subsequently the
accuracy of the Gauss-Legendre quadrature is
satisfactory.

The singularities of the free-field traction solution,
and thus of the matrix H, are of the 1/r? kind when
the observation point coincides with the integration
point. In this work, a numerical method is used to
evaluate singular integrals for rigid body motion.
This method normally applies only to closed domains.
Ahmad and Banerjee [30] generalized the method
for the 2-D case by using the enclosing elements
technique to cover open domain boundaries where
parts of the boundary are not discretized. Their method
is employed to the 3-D case in this research.

The basis of the numerical method proposed by
Dominguez [31] and others [32] for closed domains
is that the singularity in the dynamic frequency
domain solution arises from the static solution. By
writing the total dynamic free-field solution matrix H
for the traction as the summation of the static part,
H,, and the dynamic residue matrix, H, i.e.,

H=Hg+H, 9)

specia treatment is needed only for the singularities
of the static part H,. The remainder H_ can be
determined using standard Gauss-Legendre quadra-
ture, since it contains no singularities. For the 3-D
case, the remainder term is derived by writing the
exponential terms of the full elastodynamic solution
as series expansions and subtracting the terms
corresponding to the elastostatic fundamental
solution [31]. Although the singular terms may be
calculated analytically, this becomes complicated
for complex geometries and therefore a numerical
method for dealing with the singularities is preferred.
The diagonal block of matrix H contains the tensor
c; as well as the Cauchy principal value of the
traction kernel integral [30], i.e.,

Blj:CIj+ d?” NldS
d (10)
in which N, is the shape function for the singular
node and S, is the area of the singular element. The
corresponding equation for the static problemis:

Di?:cij +g:i]$NldS (11)

From Egs. (10) and (11) we can write:

D;j=Dj+ §(F; - Fj)NdS (12)
S
In Eq. (12), the diagonal blocks Dj, which are
the coefficients of the traction matrix for the static
problem having the same geometry, can be obtained
by using the rigid body motion, i.e.,

Di=g+ oFjNidS=
S

8 s & . s (13)
[aalzglF” N,dS+ izil% FijN,dS]

in which, A is the number of nodes in an element,
and Q is the total number of elements. The method
described above is obviously meaningless for an
open domain as parts of the boundary are not
included in the formulation. To overcome this
problem, Ahmad and Banerjee [30] proposed that
an artificial enclosing boundary be constructed
merely for the evaluation of the singular diagonal
terms of Hg and the constants related to the geometry.
The basic assumption in this technique is that the
displacements and tractions along the enclosing
boundary at a sufficiently distant location have a
negligible effect on the displacements along the
modeled boundary. Using this scheme, the diagonal
blocks Dj of the H matrix are obtained by the
summation of non-singular integrations of the static
traction kernel over al the elements of the modeled
boundary as well as enclosing elements, i.e.,

Qoy,

S _ Y S °Q 66\\ S
I:)IJ —'[ zquj NadS+ a a qu:” NadS

gq=2a=1

a
L A (14)
+a a QeFi?NadS]
e=la=1
where the third summation in Eq. (14) corresponds
to the L enclosing elements. Once Dj is evaluated,
the diagonal blocks 5,,- related to the dynamic
problem can be easily found by using Eg. (12). Any
closed region which has the correct local geometry
for the true surface may be used instead of the original
open region for the purpose of determining H. Any
domain shape can be used for evaluating the diagonal
terms of Hgas long as the following requirements
are met:
1. The distance between the origina elements and
the new enclosing elements should be at least one
element length to ensure sufficient precision.
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2. The original geometry should be modeled
correctly at the nodes. There is no contribution
from the enclosing elements in the system of
equations and also no extra degrees-of-freedom
are introduced, because the enclosing elements
are used only for integrating the static traction
fundamental solution on the elements for which
the H terms are to be found.

6. Numerical Results and Discussion

A special-purpose 3-D computer program was
developed to implement the boundary element
procedures for an incident plane wave with circular
frequency w. The propagation direction of the wave
was defined by angles g, and q, corresponding to
the angle of the ray (normal to wave front) from the
horizontal x- and vertical z-axes, see Figure (1). The
program can be used for canyons of arbitrary shape.
The numerical examples of this section are designed
to demonstrate the accuracy and efficiency of the
method for different cases.

7.Validation Study

In order to obtain accurate results, the discretization
should be fine enough and the 3D boundary element
model should be large. The authors' studies lead to
the fact that in order to obtain accurate results, the
element size should be smaller than one-fourth of
the shear wavelength. To establish the numerical
accuracy of the method, problems involving the
scattering of a harmonic plane SH-wave, for which
results are available from previous works, are
solved using the proposed method. In all cases, a
semi-circular cross section of radius R cut in a
homogenous half space is considered. The semi-
cylindrical canyon and a length 1.5R of the free field
on each side of the canyon are discretized as
shown in Figure (4). The model has 180 nine-node

Figure 4. Schematic picture of the semi-cylindrical canyon.
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boundary elements with 777 nodes along the main
boundary. A length 1.5R of the free field on each
side of the canyon and a length 5R along the canyon
axis are modeled. The results obtained by the
boundary element (BE) method for a 2-D SH wave
of unit amplitude impinging normal to the canyon
axis is compared first with the exact solution
by Trifunac [3]. The results presented in Figure (5)
show the displacement amplitudes around the
canyon for the horizontal angle of ¢, =45 thevertical
angles of ¢,=T and 45 for unit dimensionless
frequency (W =wR/pc,=1). A similar comparison is
presented in Figure (6) for q,=q,=0, which
corresponds to a vertically incident SH wave with
particle motion perpendicular to the axis of the
canyon. For this test case the numerical result

_— 6= 00F 0= 45" BEM
£ = =H= 007 0 =1 BEM

& B 807 6 = r, Trifumac
3 L | o 8=90F & =45 Trilurac|
3
T
@
¥
&

Dizplacernant Amplitude

05 025 ] 025
Distanee [YR)

Figure 5. Displacement amplitudes obtained by the BE Method
and by Trifunac for incident SH-Wave with W=1.

a Liy- Zhang & Chogpra
n Uz- Zhang & Chopra
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-2 -1.6 -1 05 4] ns 1 1.5 F
Destance (¥ H)]

Figure 6. Displacement amplitudes versus relative distance
obtained by the BE method and by Zhang and Chopra
for incident SH-Wave with g, = 0, ¢, = Oand W=1.
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obtained by Zhang and Chopra [8] is used for the
comparison. There is good agreement between
results obtained by the BE method and the previous
results. The finite length of the canyon and free-
field has only a small effect on the computed
displacements.

In order to investigate the effect of the free-field
(both sides of the canyon cross-section) length (Lh)
in finite 3D model on the accuracy of the results,
two different free-field lengths (Lh = 1.5R and 3R)
with the same canyon length (L = 5R) are considered
and compared with each other in Figure (7). The
results show that this parameter has a little effect on
the accuracy of the results. Also in order to investigate
the effect of the (model longitudinal) canyon length
(L) on the accuracy of the results, different models
with the same free-field length are analyzed. The
results of these analyses are presented in Figure (8).
These results show that the canyon length is more
effective parameter than the free-field length in
order to obtain accurate results. The long canyon
gives more accurate results than the short one.
Analysis with different lengths of canyon show that
to obtain the results with an acceptable accuracy,
(i.e., errors of less than 10%) one does not need to
model beyond 10R length of the canyon. The same
analysis with different lengths of the free-field is
done and shows that in order to obtain sufficiently
accurate results the free-field, surface should be
discretized on both sides of the canyon over a
distance of at least three times of the canyon radius.

8. Effectsof Wave Characteristics

The results obtained for analysis with different
dimensionless frequencies are shown in Figure (9).
The results show that the variation of displacements
across the canyon is more complicated for high
dimensionless frequency than for low dimensionless
frequency. At unit dimensionless frequency, the
wavelength of the incident field is equal to the
diameter of the valley; on the other hand for
dimensionless frequency equal to 0.5, the wavelength
of the incident field is equal to two times of the
diameter of the valley. Hence for the dimensionless
frequency equal to 0.5, the input wave does not
detect the presence of the canyon as the scattering
as well as for the unit dimensionless frequency case.
As the wavelength of the input wave becomes
comparable to the characteristic length of the canyon,
more complicated wave pattern of the scattered field
is expected.
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Figure 7. Displacement amplitude versus relative distance
for two different free-field lengths calculated
by the BE method and by Zhang and Chopra for
incident SH-Wave with ¢, =45,q, =45and
W=1.
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Figure 8. Displacement amplitude versus relative distance for
two different canyon lengths calculated by the BE
method and by Zhang and Chopra for incident SH-
Wave with g, =45, g, =45and W=1.
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Figure 9. Comparison of results obtained for two different
dimensionless frequency (W= 0.5 and W= 1) for
incident SH-Wave with ¢, =45and q, =45.

Analyses for different wave incident angles with
unit dimensionless frequency have been completed
and results are presented in Figure (10). Different
patterns of the displacement variation across the
canyon are achieved for different wave incident
angles. It is shown that wave incident angle is one of
the most important parameter on the pattern of the
displacement variation across the canyon.
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Figure 10. The results obtained for different wave incident
angles with unit dimensionless frequency for
incident SH-Wave.

9. Effectsof Material Parameters

The effect of material properties of half space such
as damping ratio and poisson’s ratio are investigated
by different analysis and are illustrated in Figures
(11) and (12), respectively. The results show that
these parameters do not affect the pattern of the
displacement variation across the canyon but in order
to get accurate results of topographic phenomenon,
these parameters should be evaluated precisely. The
system with damping may induce large displacements
in the side of the canyon located in the wave arriving
direction in comparison to system without damping.
In general, the difference of maximum displacements
obtained in both sides of the canyon is increasing
with damping.

10. Effects of Canyon Geometry

In order to investigate the effect of the canyon
geometry on the topographic amplification, the
model of a semi-elliptical canyon as illustrated in
Figure (13) is considered and analyzed. The results
are compared with results of the canyon with the
semi-circular cross section canyon. The large
diameter of semi-elliptical canyon is considered to
be 2R (in the y-direction) and the small diameter is
R (in the z-direction). This model can also be used
to investigate the effect of the depth of the canyon
due to this fact that the only difference between two
models is the depth of points located on the canyon.
The results obtained for two different dimensionless
frequencies for these models are presented in
Figures (14) and (15). It can be concluded that the
effect of canyon shape and canyon depth on the

3
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Figure 11. Comparison of results obtained for different
damping ratio for incident SH-Wave with q, = 45,
Q, =45and W=1.

topographic amplification is frequency dependent.
On the other hand, comparison for same frequencies
shows that the topographic effect depends on the
canyon shape and depth, too. Results obtained for
two different dimensionless frequency show that the
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deep canyon (semi-circular canyon) has more
amplification effect on displacement amplitude
along the canyon in comparison to shallow canyon
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Figure 12. Comparison of results obtained for different
Poisson's ratio for incident SH-Wave with g, = 45,
Q, =45and W=1.

Figure 13. A schematic picture of the semi-elliptical canyon.
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(semi-elliptical canyon). For small dimensionless
frequency, the wavelength of the incident wave is
larger than the characteristic length of the canyon
as depth for semi-elliptical one rather than semi-
circular one. In this case the existence of the
semi-elliptical valley is less detected and therefore
the scattered wave field is not complicated. Results
obtained for high dimensionless frequency is more
sensitive to increasing of the depth of the canyon
than for low dimensionless frequency.
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Figure 14. Comparison of results obtained for canyons with
different shapes for incident SH-Wave with
O, =45, g, =45and W=1.
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Figure 15. Comparison of results obtained for canyons with
different shapes for incident SH-Wave with
Qy =45, g, =45and W=1.

11. Conclusions

The multi-domain boundary element method proposed
by Ahmad and Banerjee [30] is employed to three
dimensional wave propagation problems. Results
from this method are compared to previous results
obtained by Trifunac [3] and Zhang and Chopra [8].
This method yields sufficiently accurate results and
can be used for real-world problems with complex
topographies.

Effects of different parameters are investigated
and the following results obtained:

The free-field (both sides of the canyon cross-
section) length is lessinfluential on the accuracy of
results than the (model longitudinal) canyon length.
Analysis with different lengths of canyon and free-
field show that in order to obtain sufficiently accurate
results, one does not need to go beyond 10R and
3R (R, being the canyon section effective radius),
respectively.

It is shown that the material properties as well
as the wave incident angle and frequency have
considerable effects on the wave scattering
problems. When applying usual values of damping,
the damped system may induce larger displacements
on the side of the canyon located on the wave
incident direction in comparison to system without
damping. Wave parameters (direction and frequency)
affect the pattern of the displacement variation across
the canyon. On the other hand, material properties
(damping value and poisson’s ratio) have only
negligible effects on the pattern of the displacement
variation.

The effect of canyon shape and canyon depth on
the topographic amplification is frequency dependent.
The amplification of displacement has a direct
relationship with the canyon depth. Deep canyons
induce more amplification effects than shallow
canyons in different dimensionless frequencies.

For high dimensionless frequencies, the obtained
results are more sensitive to the canyon depth than
for low dimensionless frequencies.
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